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Abstract: Osteoporosis, characterized by a reduction in bone density, is a common condition among the elderly,
leading to increased fracture risks. Early detection is critical for effective medical intervention to prevent severe
complications. This study explores the viability of using machine learning-based technologies for detecting
osteoporosis through computerized tomography (CT) scan images and enhanced image attributes. The machine
learning model was trained on a dataset of 520 CT scan images from patients with normal and osteoporotic bone
conditions.
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Novel image attributes — phase, contrast, roughness, and grayscale — were derived from the original CT scan images.
These attributes were tested in multiple input scenarios (single, double, and multi-attribute) to assess their contribution
to the accuracy of the model. The results demonstrated that incorporating these image attributes into the machine
learning model significantly enhanced the detection accuracy of osteoporosis, showcasing the potential of this method
for automated, non-invasive diagnosis. Unlike conventional methods, this approach introduces a novel set of image
attributes for bone quality evaluation, which improves the prediction of osteoporosis in CT scan images and reduces
false negatives. However, further validation on a larger dataset is required before clinical application.

Keywords: Osteoporosis, Bone Quality, Imaging, CT-Scan, Automatization.
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1. Introduction

The growing elderly population presents increasing
challenges for healthcare systems, including the age-
related decline in bone quality. Osteoporosis, a condition
characterized by reduced bone density and increased
susceptibility to fractures, is highly prevalent among
older adults. Although not directly life-threatening,
osteoporosis can lead to serious complications if
fractures occur without timely medical intervention.
Therefore, early detection of osteoporosis enables the
prompt initiation of appropriate therapeutic measures.
As a result, early diagnosis and intervention can
effectively prevent the adverse consequences associated
with this condition.

However, early detection of osteoporosis remains
challenging. @ Bone mineral density (BMD)
measurement, which is typically the primary indicator of
bone health, is often not performed due to limited
availability of required equipment. Dual-energy X-ray
absorptiometry (DXA) is the most widely used method
for assessing BMD. Nevertheless, DXA is not always
accessible in smaller or rural healthcare settings.
Moreover, the diagnostic interpretation based on DXA
can be complicated by various factors, including image
acquisition protocols, post-processing techniques,
analytical variability, image artifacts, and potential
diagnostic pitfalls [1]. Additional patient-specific

factors—such as ethnicity, sex, and body composition—
must also be taken into account when evaluating bone
quality [2].

This article investigates the feasibility of integrating
machine learning with alternative imaging modalities —
specifically, computed tomography (CT) scan images —
to quantify bone quality, with a focus on differentiating
between osteoporotic and healthy bone. Recent
advances in machine learning have enabled its
widespread application across various domains,
including medicine. Albuquerque et al. [3] classified
bone conditions using supervised machine learning
based on electromagnetic wave recordings. Their results
demonstrated that combining electromagnetic sensing
with machine learning can effectively indicate
osteoporosis status, offering advantages such as reduced
cost and shorter processing time.

In this study, we aim to advance existing approaches
by exploring imaging modalities other than DXA for
osteoporosis assessment. We propose the development
of novel image-based features and their integration into
machine learning models to enable automated
classification of bone health.

2. Bone Quality Assessment

Bone is a dynamic tissue composed of cells
responsible for both resorption and formation. In a
healthy individual, these processes are in equilibrium.
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However, when this balance is disrupted; for example,
when the rate of bone resorption exceeds that of bone
formation, substantial bone loss occurs, leading to a
decline in bone quality. This imbalance is characteristic
of osteoporosis, a condition in which bone resorption
predominates over remodeling.

The extent of bone remodeling is influenced by the
internal surface area available for cellular activity.
Cortical bone has a relatively low surface area compared
to trabecular bone, which is highly porous and
metabolically more active. Consequently, trabecular
bone exhibits greater changes in bone mineral density
(BMD) and is more susceptible to osteoporotic
deterioration than cortical bone [4].

Figure 1 illustrates bone structure in CT images of a
normal bone (Figure la) and an osteoporotic bone
(Figure 1b). In CT imaging, higher radiodensity
corresponds to brighter (whiter) regions, indicating
harder, denser bone, while darker areas represent lower
density and reduced hardness. The grayscale intensity,
expressed in Hounsfield units (HU), is directly related to
bone mineral density. Qualitatively, bone structure in CT
images is assessed by evaluating HU values or grayscale
intensity as a visual indicator of bone density.

Figure 1. CT scan images of (a) normal bone and (b)
osteoporosis bone (authors’ scan images)

Eventually, dual-energy X-ray absorptiometry

(DXA) became the gold standard for measuring bone

mineral density. However, DXA has several limitations,
including relatively high radiation exposure in certain
protocols, difficulties in accurately reconstructing
fracture morphology, and reduced sensitivity in
detecting subtle fractures and structural changes. To
address these limitations, Yaprak et al. [S] proposed the
use of CT-derived Hounsfield units (HU) as a practical
and accessible method for osteoporosis assessment.

The use of computed tomography (CT) scan images
as a screening tool for osteoporosis has also been
explored in clinical contexts such as chronic pancreatitis
and other systemic conditions [6]. Variations in bone
quality and microstructure not only result in distinct HU
values but may also affect other image-based features
concealed within the CT data. Genisa et al. [7]
successfully identified several image attributes,
extracted through image processing techniques, that can
differentiate between healthy and osteoporotic bone
using original CT scan images.

Figure 2 illustrates examples of image attributes
(specifically, grayscale contrast features) derived from
CT images. A notable difference is evident between
healthy bone (Figure 2a) and osteoporotic bone (Figure
2b) within the regions enclosed by red circles. The
magnitude of the image attribute is quantified by an
attribute index. In this example, contrast-based features
were used, revealing that normal bone exhibits a lower
index value compared to osteoporotic bone.

Figure 2. Example of image attribute derived from
computed tomography (CT) scan data on the pelvis
(red circle). (a) Original CT image of normal bone,
and (b) original CT image of osteoporosis bone,
circle) [7].
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The application of machine learning to automate
bone assessment has been explored in various studies,
with differing levels of performance. Rahim et al. [§]
evaluated the accuracy of existing machine learning
techniques in detecting osteoporosis using DXA images.
Their results demonstrated that machine learning
achieves a satisfactory level of diagnostic accuracy, with
some models also showing improvement in fracture
prediction.

Sebro and Elmahdy [9] utilized computed
tomography (CT) scan images as input for a machine
learning algorithm designed to detect knee osteoporosis
and osteopenia. Their findings indicated that
opportunistic screening for low bone density can be
effectively performed using routine CT scans combined
with machine learning. Sebro and Ramos [10] extended
this approach by applying machine learning to CT
imaging for the detection of cervical spine osteoporosis.
Their method successfully classified bone conditions
and incorporated Hounsfield unit (HU) thresholding into
the analysis of CT images.

Although DXA remains the gold standard for
assessing bone mineral density (BMD) and diagnosing
osteoporosis, alternative imaging modalities—such as
MRI, quantitative CT (qCT), optical coherence
tomography (oCT), and others—offer viable options for
bone quality evaluation. These modalities may provide
advantages in terms of accessibility, cost, and
integration into existing clinical workflows [11].

3. Method

The methodology employed in this study is an image
processing and machine learning—based approach for
detecting osteoporosis using computed tomography
(CT) scan images. To evaluate the feasibility of applying
machine learning to CT images for osteoporosis
identification, a dataset of 520 CT scans, comprising
cases of both normal and osteoporotic bone, was used to
train and test the classification algorithm.

The original CT images contain multiple tissue types.
Therefore, a segmentation process was performed to
isolate bone tissue and exclude non-skeletal structures.
Segmentation was conducted in two stages: first, a
Hounsfield unit (HU) threshold was applied to extract
mineralized bone based on radiodensity; this was
followed by morphological operations to refine the
segmentation and retain only the anatomically relevant
bone regions of interest.

Figure 3 illustrates the pelvic region before and after
segmentation, demonstrating the effectiveness of the
isolation process.

(b)
Figure 3. Segmented pelvic bone: (a) before and (b)
after segmentation (authors’ scan images)

Four image attributes — Grayscale (derived from the
original CT image), Roughness, Grayscale Contrast, and
Phase were extracted using signal processing
techniques. To quantify the intensity of each attribute, an
attribute index was formulated as a scalar measure
representing its magnitude within the region of interest
(ROI).

3.1. Grayscale Index (GI)

In CT imaging, tissue density and hardness are
represented by Hounsfield units (HU). Bone assessment
is performed within a user-defined region of interest
(ROI), selected based on anatomical relevance. The
strength of the grayscale attribute is determined by
computing the average HU value within the ROI.

The Grayscale Index (GI) is defined as the root mean
square (RMS) of the HU values in the specified ROI,
providing a robust measure of average bone density that
is less sensitive to noise than a simple arithmetic mean.
The GI is calculated using Equation (1):

GI = /%zﬁleUZ (1)

3.2. Roughness Index (RI)

The roughness attribute  quantifies local
heterogeneity in bone texture within the region of
interest (ROI). It is derived by calculating the deviation
of individual Hounsfield unit (HU) values from the
mean HU within the ROI, reflecting variations in bone
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density at the voxel level. This attribute captures
microarchitectural  irregularities associated  with
trabecular degradation in osteoporosis.

The Roughness Index (RI) is computed as the root
mean square of these deviations, providing a measure of
textural complexity. The formulation is given by
Equation (2):

1
RI = HU; — EZLHUi , 2

where HU is the HU value of a pixel at a certain
region of interest.

3.3. Contrast Index (CI)

The Contrast Index (CI) is computed to quantify the
magnitude of local intensity variations in CT images,
reflecting spatial changes in radiodensity. Since CT
images represent the X-ray attenuation properties of
tissues, the CI serves as an indicator of the heterogeneity
in absorption across adjacent regions. Higher contrast
values correspond to sharper transitions in density,
which are typically associated with preserved trabecular
architecture, while lower values may indicate structural
degradation seen in osteoporosis.

The CI is derived from the first-order derivative of
the Hounsfield unit (HU) intensity field within the
region of interest (ROI), capturing the rate of change in
attenuation. This gradient-based measure emphasizes
edges and textural boundaries in the bone structure.
Equation (3) illustrates the discrete formulation of the

CI:
sie o[ e )|

+K Jj 2
Zk:—KZj=1ajk

Cl =

,3)

where the a;; denotes the HU value in two dimensions
at the pixel, where x and y are the coordinates; C/
represents the contrast of HU caused by the absorption
or intensity of X-ray energy.

3.4. Phase Index (PI)

To determine the Phase Index (PI), the image is
subjected to a 2D Fourier transform. The initial step
involves converting the original image to a complex
number via the Hilbert transform, which is defined by
Equation (4). The phase index, which is equivalent to the
phase difference between the image’s real and imaginary
components, is computed using Equation (5).

{HT (x,y)}
@(x,y) = arc Tan (—Hng ; ) (4)

ai1? aix1? 1/2
zzf_x([:—ik] +[aa_§k] ) (5)

+K Ji 2
Zk:—KZj=1ajk

Cl =

In the given context, HU represents the HU value of

the pixel denoted by x and y, HT denotes the Hilbert
transform, and @(x ,y) signifies the phase. The index
term is calculated for all image attributes by dividing the
normalized value of each attribute by the number of
pixels comprising the region of interest.

The classification or automation of bone assessment
is accomplished through machine learning using a
convolutional neural network (CNN) architecture. A
diagrammatic representation of the bone classification
process is illustrated in Figure 4. The input features for
this algorithm consist of image attributes derived from
the original CT scan data. Three distinct scenarios were
executed to evaluate the benefits of using attributes to
enhance the accuracy of machine learning in identifying
bone conditions: single attribute, double attribute, and
multi-attribute. The AI/ML algorithm’s performance is
evaluated by assessing output accuracy, including the
identification of true positives, true negatives, false
positives, and false negatives.

Original CT

Images
e Al/ML

Classifier

Normal/
Osteoporosis

Image

Attributes

Figure 4. AI/ML workflow for bone classification
(developed by the authors)

4. Results and Discussion

4.1. Image Attribute Analysis

A quick examination of the images is sufficient to
perform a diagnosis of the bone condition, provided that
the image accurately depicts the condition. Nonetheless,
this method is often subjective. As a result, quantitative
analysis is typically required. One approach to
determining the quantitative value is to calculate the
index number. In the future, this value may serve as a
benchmark or reference for establishing the conditions.
The evaluated images derived from CT scans are listed
below along with their corresponding index numbers.
The investigation focused on the pelvic bone, an
additional site of osteoporosis prevalent among the
elderly.

4.2. Grayscale Index (GI)

The HU on the CT image denotes the tissues’
hardness. However, various factors can influence the
HU in CT, some of which may not directly reflect the
condition of the material. These factors vary depending
on the specific equipment and dosage used. Therefore,
the direct threshold of HU for indicating bone density
must be carefully considered. Grayscale values for bone
are greater than those of soft tissues. Bones with greater
density are expected to exhibit higher grayscale values
than those with lower density. Bone density estimated by
computed tomography correlates strongly with BMD.
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Kim et al. [12] demonstrated that the HU may serve as a
criterion for assessing bone condition.

To obtain the Grayscale Index (GI), an average
value is calculated within a specific region of interest.
Figure 5 illustrates the applied grayscale attributes of
normal and osteoporotic pelvic bones. The ROI is
denoted by the red line. Normal bone has a higher GI
value than bone with osteoporosis.

Gray index = 71
(a)

Gray index =29
(b)

Figure 5. Illustrates the Grayscale Index computed
on (a) the original CT scan image of normal bone
and (b) the original CT scan image of bone with
osteoporosis (authors’ scan images)

4.3. Roughness Index (RI)

Bones vary in density and microstructure throughout
their composition. Due to the modeling and remodeling
process, bone heterogeneity can be increased [13]. The
Roughness Index (RI) of various bone conditions was
computed in this investigation. However, the evaluation
region included both cortical and trabecular bone. As
shown in Figure 6, the new image attribute of roughness
is calculated for both normal and osteoporotic
conditions. The RI value of normal bone is higher than
that of osteoporotic bone. Visually, in the roughness
attribute, normal bone has a denser appearance than
bone with osteoporosis, particularly in the cortical
region.

Roughness index = 56
(a)

Roughness index = 44
(b)
Figure 6. Roughness Index of bone on the: (a)
normal and (b) osteoporosis conditions (authors’
scan images)

4.4. Contrast Index (CI)

Bone resorption and remodeling processes tend to
increase the heterogeneity of bone density and bone
mineral density (BMD). Not only do they impact the
overall density of bone minerals, but they also influence
the density distribution. Furthermore, it is possible that
BMDD could serve as a metric for assessing bone health
[14]. The Contrast Index (CI) indicates the difference in
HU between the current pixel and the adjacent pixel. A
greater magnitude of density variation results in higher
contrast. In the case of osteoporosis, where bone
heterogeneity is substantial, a high CI is expected. CI
applied to CT scan images is illustrated in Figure 7. The
results indicate that the CI value of osteoporotic bone is
higher than that of normal bone. As hypothesized, bones
with osteoporosis are observed to have a progressive
increase in BMDD rather than a decrease in BMD. A
possible correlation exists between high BMDD
variability and elevated bone fracture risk.
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Contrast index = 38

Contrast index = 63
(b)
Figure 7. Contrast index at two bone types: (a)
normal and (b) osteoporosis (authors’ scan images)

4.5. Phase Index (PI)

Formation takes place on outer surfaces as a
compensatory measure for bone loss, while resorption
predominates on inner surfaces in the elderly. Bone
quality deteriorates when the processes of resorption and
remodeling are unbalanced, as is the case in
osteoporosis. This mechanism is mediated by
osteoblasts and osteoclasts. The inability of osteoblasts
to function results in the failure to generate collagen
molecules, which can lead to skeletal fragility. Thus, the
remodeling process influences the structural integrity
and metabolic capabilities of the skeleton. The
trabecular bone structure becomes finer in individuals
with osteoporosis, whereas cortical bone porosity
increases. The phase attributes and bone structure of
osteoporotic and normal bone were compared using
scanning electron micrographs obtained from biopsies
[13]. This is illustrated in Figure 8. The phase index of
denser bone structures is higher than that of thinner bone
structures in osteoporotic bone.

(b)

7
5\[. \
Phase index=67 Phase index=33
() (d)

Figure 8. A phase index comparison of the bone
structure of healthy and osteoporosis-affected
individuals. (a) Normal bone, (b) osteoporosis bone,
(c) normal bone phase attribute, and (d)

osteoporosis bone phase attribute (authors’ scan
images)

Applying the phase attribute to the CT scan images
of the pelvic bone is shown in Figure 9. It is obvious that
the normal pelvic bones and osteoporosis bone have
different appearances. Phase index value. The phase
index of normal bone (PI = 66) was higher than that of
osteoporosis (PI = 34). Generally, the PI value decreases
from normal bone to osteoporosis bone.

Phase Index = 66

Phase Index = 34
(b)
Figure 9. Illustrates the Phase Index of (a) normal,
and (b) osteoporosis bone (authors’ scan images)

4.6. Visual Comparison

The qualitative diagnosis of osteoporosis can be
aided by visual distinctions between osteoporotic and
healthy bone. Thus, before conducting quantitative
analysis, it is preferable to have an image attribute that
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can differentiate osteoporosis from healthy bone for
rapid visual inspection. The following summarizes the
evaluated image characteristics of the pelvic bone
compared with the initial CT scan image (Figure 10).

(b)

(d)

Figure 10. Visual comparison of various attributes
of normal bone (left) and osteoporosis (right) of (a)
original computed tomography scan (grayscale), (b)

roughness, (c) contrast, and (d) phase attribute
(authors’ scan images)

4.7. Implementation of AI/ML for Osteoporosis
Evaluation

An alternative approach to mitigate the subjectivity
associated with image-based osteoporosis diagnosis is to
automate the process using a machine learning

algorithm. However, the precision and dependability of
this method require further investigation. The present
study documents the application of ML techniques in the
context of image-based bone diagnosis.

The effectiveness of machine learning diagnoses is
assessed through prediction accuracy and the loss
function. Accuracy signifies the degree to which
machine learning can approximate the true condition,
whereas the loss function reflects prediction errors when
the model fails to identify the true condition. Two types
of prediction errors are distinguished: false positives and
false negatives. A false positive occurs when a condition
is erroneously diagnosed despite its absence. A false
negative, on the other hand, refers to an erroneous
diagnosis in which the condition is present but not
detected by ML. Although the primary objective of
machine learning diagnosis is to achieve high accuracy,
the loss function remains indispensable. In medical
applications, reducing false negatives is more critical
than reducing false positives.

To evaluate the efficacy of ML, three distinct test
scenarios involving single attributes, double attributes,
and multiple attributes were executed. In the single
attribute scenario, the ML model is trained using one
attribute. An example of a single image attribute, such
as the original CT image, is employed as input for the
AI/ML algorithm. In the double-attribute scenario, the
input to the AI/ML algorithm consists of a pair
comprising one derived attribute and the original CT
scan, or two derived attributes. In contrast, in the multi-
attribute scenario, the input consists of all attributes in
addition to the original CT scan. With the sole
distinction being the input, each test was executed using
the same machine learning architecture and the same
dataset. The training dataset comprised 160 healthy bone
samples and 160 osteoporosis-affected bone samples.
Ten bone samples were used in the testing phase: five
normal bones and five with osteoporosis; these samples
were excluded from the training phase.

Test of a single attribute: This experiment aimed to
determine the efficacy of each attribute in automatically
detecting osteoporosis via machine learning. For each of
these machine learning inputs — contrast, roughness,
phase, and CT — the input consists of a single value.
Figure 11 illustrates the efficacy of machine learning
using a CT image and a single attribute; results are also
presented in Figure 11. During the training phase, the
machine accurately predicted the target bone with a loss
function of approximately 10% and 100% accuracy.
When presented with new data samples, the AI/ML
model’s ability to correctly identify the target
deteriorated; it correctly predicted 60% of cases, with
the remaining 40% classified as false negatives. Four out
of five bones affected by osteoporosis were
misclassified as normal. Table 1 summarizes the
accuracy of each attribute. The findings indicate that the
roughness attribute yields the highest accuracy at 100%,
whereas the original CT image results in the falsest
negatives.
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Canhapisn Matric

Table 1. Performance of AI/ML in predicting bone
condition using a single attribute (compiled by the
authors) P satn o
. True True False False
Attribute Positive Negative Positive Negative
CT 50% 10% 0 40% .
Roughness 50% 50% 0 0 5 . .
Contrast 50% 10% 40% 0 i (1 o
Phase 50% 20% 0 30% &
Targot Class
(d)
Figure 11. The efficacy of AI/ML using only CT scan
images was trained on hundreds of data samples. (a)
Accuracy and loss function, (b) confusion matrix at
the training stage, (¢) predicted output, and (d)
confusion matrix of the output (test stage on 10
samples) (authors’ design)
(a) For the double-attribute test, the input was
Confusion Matrix initialized with a pair of attributes. In addition to testing
the original CT scan paired with another attribute,
18 6 alternative attribute pairs without CT were also
o - examined. Figure 12 displays the outcome of the CT—
roughness attribute pair, and Table 2 summarizes the
results for the remaining pairings. The use of paired
- attributes improved the predictive accuracy of ML for
5 av% ek osteoporosis. The accuracy of the CT pair with
Er: roughness attributes is identical to that of the CT pair
with phase attributes: 100%. However, CT continues to
produce a 30% false negative rate when combined with
contrast and phase attributes.
Table 2. Performance of AI/ML in predicting bone
. condition using pair attributes (compiled by the
] 4 . authors)
griass . . True True False False
(b) Attribute Pair Positive  Negative Positive Negative
Normal Normal Normal Normal Normal CT- 50% 50% 0 0
- Roughness
E CT- Contrast 50% 20% 0 30%
3 CT-Phase 50% 20% 0 30%
Roughness- 50% 50% 0 0
Phase

Osteo Normal Normal Normal Normal

Osteo
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(a)
Contusion Matrix
wa ]
s0.0% ook
]
= ] 18
3 Q0% S0.0%
-]
o
B
Targ#! Class
Normal Normal Normal Normal
g
I y . y - »
=
Osteo Osteo Osteo Osteo

Osteo

(©)

CanPushon Matis

Tangst Class

(d)

Normal

Figure 12. The efficacy of AI/ML using only

computed tomography scan images: (a) accuracy

and loss function, (b) confusion matrix at the
training stage, (c) predicted output, and (d)

confusion matrix of the output (test stage) (authors’

design)

The multi-attributes test was executed by providing
the AI/ML algorithm with CT and all attributes as inputs.
The outcome indicates that the highest lev-el precision
(100%) was attained. Every single targeted bone was
accurately predicted, and the loss function was
maintained at 10% (Figure 13).

(a)
] Confusion Matrix
L. ]
Srs (iTe
-
=
= ] e
IE_ s Hs
8
>
Targed Class
Normal Normal Normal Normal Normal

Normal

Osteo Osteo Osteo Osteo

Osteo
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Figure 13 illustrates the performance of AI/ML with
multiple attributes: (a) accuracy and loss function,
(b) confusion matrix at the training stage, (c)
predicted output, and (d) confusion matrix of the
output (test stage) (authors’ design)

5. Conclusion

Osteoporosis is the most prevalent condition among
the elderly and necessitates timely intervention to
prevent severe complications. Nevertheless, early
detection of osteoporosis remains challenging and is
often limited to a single technique. This research
presents an alternative approach to detecting
osteoporosis from computed tomography (CT) scan
images by employing advanced image processing
methods and artificial intelligence/machine learning
technology. Four image attributes—namely, grayscale,
roughness, contrast, and phase—were developed and
tested. The roughness and phase characteristics of
osteoporosis-affected bone differ significantly from
those of healthy bone. However, the use of these
characteristics as supplementary features in ML models
can enhance the accuracy of AI/ML in the automated
detection of osteoporosis. In contrast to relying solely on
CT scan images, incorporating additional attributes as
input can improve accuracy and reduce the occurrence
of false negatives in prediction outcomes. This approach
can serve as an alternative method for distinguishing
osteoporosis from healthy bone or for detecting the
condition.

This study presents an innovative approach for
osteoporosis  detection using machine learning
techniques and novel image attributes derived from
computed tomography scans, such as grayscale,
roughness, contrast, and phase. These attributes, which
are essential for accurate diagnosis, improve detection
accuracy and reduce false negative errors. By combining
image processing and machine learning, this method

offers a faster and more cost-effective non-invasive
alternative to traditional techniques such as DXA. The
main innovation of this study is the use of multiple
image attributes to enhance the accuracy and efficiency
of osteoporosis detection.

Based on the findings, this machine learning—based
method is recommended for osteoporosis detection in
clinical settings where DXA is not readily accessible.
Future efforts should focus on further validation of the
model using larger and more diverse datasets to confirm
its generalizability across different populations.
Moreover, integrating this automated detection system
into clinical practice would significantly reduce the
burden on healthcare professionals, enabling faster and
more accurate diagnoses.

The next steps in this research should involve
refining the model to achieve higher accuracy and
incorporating additional image attributes that may
further enhance the evaluation of bone condition. Future
studies could also explore combining different imaging
modalities, such as MRI or qCT, with machine learning
to provide a comprehensive and robust diagnostic tool.
Additionally, real-time application of the model in
clinical settings, followed by longitudinal studies to
monitor its impact on patient outcomes, would help
establish the method’s clinical utility and effectiveness.
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