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Abstract: Osteoporosis, characterized by a reduction in bone density, is a common condition among the elderly, 

leading to increased fracture risks. Early detection is critical for effective medical intervention to prevent severe 

complications. This study explores the viability of using machine learning-based technologies for detecting 

osteoporosis through computerized tomography (CT) scan images and enhanced image attributes. The machine 

learning model was trained on a dataset of 520 CT scan images from patients with normal and osteoporotic bone 

conditions.  
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Novel image attributes – phase, contrast, roughness, and grayscale – were derived from the original CT scan images. 

These attributes were tested in multiple input scenarios (single, double, and multi-attribute) to assess their contribution 

to the accuracy of the model. The results demonstrated that incorporating these image attributes into the machine 

learning model significantly enhanced the detection accuracy of osteoporosis, showcasing the potential of this method 

for automated, non-invasive diagnosis. Unlike conventional methods, this approach introduces a novel set of image 

attributes for bone quality evaluation, which improves the prediction of osteoporosis in CT scan images and reduces 

false negatives. However, further validation on a larger dataset is required before clinical application. 

Keywords: Osteoporosis, Bone Quality, Imaging, CT-Scan, Automatization. 

基于计算机断层扫描图像和机器学习的骨质疏松症识别 

摘要：骨质疏松症是老年人群的常见疾病，其特征是骨密度降低，导致骨折风险增加。

早期发现对于有效的医疗干预和预防严重并发症至关重要。本研究探索了利用机器学习技术

通过计算机断层扫描 (CT) 图像和增强图像属性检测骨质疏松症的可行性。该机器学习模型基

于 520 幅来自正常和骨质疏松症患者的 CT 扫描图像数据集进行训练。从原始 CT 扫描图像

中衍生出新的图像属性——相位、对比度、粗糙度和灰度。这些属性在多种输入场景（单属

性、双属性和多属性）下进行测试，以评估其对模型准确性的贡献。结果表明，将这些图像

属性纳入机器学习模型可显著提高骨质疏松症的检测准确性，展现了该方法在自动化、非侵

入性诊断方面的潜力。与传统方法不同，该方法引入了一套用于骨质量评估的新型图像属

性，从而提高了 CT 扫描图像中骨质疏松症的预测能力，并降低了假阴性率。然而，在临床

应用之前需要对更大的数据集进行进一步验证。 

关键词：骨质疏松症、骨质量、成像、CT扫描、自动化. 

1. Introduction
The growing elderly population presents increasing

challenges for healthcare systems, including the age-

related decline in bone quality. Osteoporosis, a condition 

characterized by reduced bone density and increased 

susceptibility to fractures, is highly prevalent among 

older adults. Although not directly life-threatening, 

osteoporosis can lead to serious complications if 

fractures occur without timely medical intervention. 

Therefore, early detection of osteoporosis enables the 

prompt initiation of appropriate therapeutic measures. 

As a result, early diagnosis and intervention can 

effectively prevent the adverse consequences associated 

with this condition. 

However, early detection of osteoporosis remains 

challenging. Bone mineral density (BMD) 

measurement, which is typically the primary indicator of 

bone health, is often not performed due to limited 

availability of required equipment. Dual-energy X-ray 

absorptiometry (DXA) is the most widely used method 

for assessing BMD. Nevertheless, DXA is not always 

accessible in smaller or rural healthcare settings. 

Moreover, the diagnostic interpretation based on DXA 

can be complicated by various factors, including image 

acquisition protocols, post-processing techniques, 

analytical variability, image artifacts, and potential 

diagnostic pitfalls [1]. Additional patient-specific 

factors—such as ethnicity, sex, and body composition—

must also be taken into account when evaluating bone 

quality [2]. 

This article investigates the feasibility of integrating 

machine learning with alternative imaging modalities – 

specifically, computed tomography (CT) scan images – 

to quantify bone quality, with a focus on differentiating 

between osteoporotic and healthy bone. Recent 

advances in machine learning have enabled its 

widespread application across various domains, 

including medicine. Albuquerque et al. [3] classified 

bone conditions using supervised machine learning 

based on electromagnetic wave recordings. Their results 

demonstrated that combining electromagnetic sensing 

with machine learning can effectively indicate 

osteoporosis status, offering advantages such as reduced 

cost and shorter processing time. 

In this study, we aim to advance existing approaches 

by exploring imaging modalities other than DXA for 

osteoporosis assessment. We propose the development 

of novel image-based features and their integration into 

machine learning models to enable automated 

classification of bone health. 

2. Bone Quality Assessment
Bone is a dynamic tissue composed of cells

responsible for both resorption and formation. In a 

healthy individual, these processes are in equilibrium. 
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However, when this balance is disrupted; for example, 

when the rate of bone resorption exceeds that of bone 

formation, substantial bone loss occurs, leading to a 

decline in bone quality. This imbalance is characteristic 

of osteoporosis, a condition in which bone resorption 

predominates over remodeling. 

The extent of bone remodeling is influenced by the 

internal surface area available for cellular activity. 

Cortical bone has a relatively low surface area compared 

to trabecular bone, which is highly porous and 

metabolically more active. Consequently, trabecular 

bone exhibits greater changes in bone mineral density 

(BMD) and is more susceptible to osteoporotic 

deterioration than cortical bone [4]. 

Figure 1 illustrates bone structure in CT images of a 

normal bone (Figure 1a) and an osteoporotic bone 

(Figure 1b). In CT imaging, higher radiodensity 

corresponds to brighter (whiter) regions, indicating 

harder, denser bone, while darker areas represent lower 

density and reduced hardness. The grayscale intensity, 

expressed in Hounsfield units (HU), is directly related to 

bone mineral density. Qualitatively, bone structure in CT 

images is assessed by evaluating HU values or grayscale 

intensity as a visual indicator of bone density. 

(a) 

(b) 

Figure 1. CT scan images of (a) normal bone and (b) 

osteoporosis bone (authors’ scan images) 

Eventually, dual-energy X-ray absorptiometry 

(DXA) became the gold standard for measuring bone 

mineral density. However, DXA has several limitations, 

including relatively high radiation exposure in certain 

protocols, difficulties in accurately reconstructing 

fracture morphology, and reduced sensitivity in 

detecting subtle fractures and structural changes. To 

address these limitations, Yaprak et al. [5] proposed the 

use of CT-derived Hounsfield units (HU) as a practical 

and accessible method for osteoporosis assessment.  

The use of computed tomography (CT) scan images 

as a screening tool for osteoporosis has also been 

explored in clinical contexts such as chronic pancreatitis 

and other systemic conditions [6]. Variations in bone 

quality and microstructure not only result in distinct HU 

values but may also affect other image-based features 

concealed within the CT data. Genisa et al. [7] 

successfully identified several image attributes, 

extracted through image processing techniques, that can 

differentiate between healthy and osteoporotic bone 

using original CT scan images. 

Figure 2 illustrates examples of image attributes 

(specifically, grayscale contrast features) derived from 

CT images. A notable difference is evident between 

healthy bone (Figure 2a) and osteoporotic bone (Figure 

2b) within the regions enclosed by red circles. The 

magnitude of the image attribute is quantified by an 

attribute index. In this example, contrast-based features 

were used, revealing that normal bone exhibits a lower 

index value compared to osteoporotic bone. 

(a) 

(b) 

Figure 2. Example of image attribute derived from 

computed tomography (CT) scan data on the pelvis 

(red circle). (a) Original CT image of normal bone, 

and (b) original CT image of osteoporosis bone, 

circle) [7]. 
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The application of machine learning to automate 

bone assessment has been explored in various studies, 

with differing levels of performance. Rahim et al. [8] 

evaluated the accuracy of existing machine learning 

techniques in detecting osteoporosis using DXA images. 

Their results demonstrated that machine learning 

achieves a satisfactory level of diagnostic accuracy, with 

some models also showing improvement in fracture 

prediction. 

Sebro and Elmahdy [9] utilized computed 

tomography (CT) scan images as input for a machine 

learning algorithm designed to detect knee osteoporosis 

and osteopenia. Their findings indicated that 

opportunistic screening for low bone density can be 

effectively performed using routine CT scans combined 

with machine learning. Sebro and Ramos [10] extended 

this approach by applying machine learning to CT 

imaging for the detection of cervical spine osteoporosis. 

Their method successfully classified bone conditions 

and incorporated Hounsfield unit (HU) thresholding into 

the analysis of CT images. 

Although DXA remains the gold standard for 

assessing bone mineral density (BMD) and diagnosing 

osteoporosis, alternative imaging modalities—such as 

MRI, quantitative CT (qCT), optical coherence 

tomography (oCT), and others—offer viable options for 

bone quality evaluation. These modalities may provide 

advantages in terms of accessibility, cost, and 

integration into existing clinical workflows [11]. 

3. Method

The methodology employed in this study is an image 

processing and machine learning–based approach for 

detecting osteoporosis using computed tomography 

(CT) scan images. To evaluate the feasibility of applying 

machine learning to CT images for osteoporosis 

identification, a dataset of 520 CT scans, comprising 

cases of both normal and osteoporotic bone, was used to 

train and test the classification algorithm. 

The original CT images contain multiple tissue types. 

Therefore, a segmentation process was performed to 

isolate bone tissue and exclude non-skeletal structures. 

Segmentation was conducted in two stages: first, a 

Hounsfield unit (HU) threshold was applied to extract 

mineralized bone based on radiodensity; this was 

followed by morphological operations to refine the 

segmentation and retain only the anatomically relevant 

bone regions of interest. 

Figure 3 illustrates the pelvic region before and after 

segmentation, demonstrating the effectiveness of the 

isolation process. 

(a) 

(b) 

Figure 3. Segmented pelvic bone: (a) before and (b) 

after segmentation (authors’ scan images) 

Four image attributes – Grayscale (derived from the 

original CT image), Roughness, Grayscale Contrast, and 

Phase were extracted using signal processing 

techniques. To quantify the intensity of each attribute, an 

attribute index was formulated as a scalar measure 

representing its magnitude within the region of interest 

(ROI).  

3.1. Grayscale Index (GI) 

In CT imaging, tissue density and hardness are 

represented by Hounsfield units (HU). Bone assessment 

is performed within a user-defined region of interest 

(ROI), selected based on anatomical relevance. The 

strength of the grayscale attribute is determined by 

computing the average HU value within the ROI. 

The Grayscale Index (GI) is defined as the root mean 

square (RMS) of the HU values in the specified ROI, 

providing a robust measure of average bone density that 

is less sensitive to noise than a simple arithmetic mean. 

The GI is calculated using Equation (1): 

𝐺𝐼 = √
1

𝑁
∑ 𝐻𝑈2𝑁

𝑛=1 (1) 

3.2. Roughness Index (RI) 

The roughness attribute quantifies local 

heterogeneity in bone texture within the region of 

interest (ROI). It is derived by calculating the deviation 

of individual Hounsfield unit (HU) values from the 

mean HU within the ROI, reflecting variations in bone 
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density at the voxel level. This attribute captures 

microarchitectural irregularities associated with 

trabecular degradation in osteoporosis. 

The Roughness Index (RI) is computed as the root 

mean square of these deviations, providing a measure of 

textural complexity. The formulation is given by 

Equation (2): 

𝑅𝐼 = 𝐻𝑈𝑖 −
1

𝑁
∑ 𝐻𝑈𝑖

𝑁
𝑖=1  ,    (2) 

where HU is the HU value of a pixel at a certain 

region of interest. 

3.3. Contrast Index (CI) 

The Contrast Index (CI) is computed to quantify the 

magnitude of local intensity variations in CT images, 

reflecting spatial changes in radiodensity. Since CT 

images represent the X-ray attenuation properties of 

tissues, the CI serves as an indicator of the heterogeneity 

in absorption across adjacent regions. Higher contrast 

values correspond to sharper transitions in density, 

which are typically associated with preserved trabecular 

architecture, while lower values may indicate structural 

degradation seen in osteoporosis. 

The CI is derived from the first-order derivative of 

the Hounsfield unit (HU) intensity field within the 

region of interest (ROI), capturing the rate of change in 

attenuation. This gradient-based measure emphasizes 

edges and textural boundaries in the bone structure. 

Equation (3) illustrates the discrete formulation of the 

CI: 

𝐶𝐼 = [
∑ ([

𝜕𝑎𝑗𝑘

𝜕𝑥
]

2

+[
𝜕𝑎𝑗𝑘

𝜕𝑦
]

2

)+𝐾
𝑘=−𝐾

∑ ∑ 𝑎𝑗𝑘
2𝑗

𝑗=1
+𝐾
𝑘=−𝐾

]

1/2

, (3) 

where the ajk denotes the HU value in two dimensions 

at the pixel, where x and y are the coordinates; CI 

represents the contrast of HU caused by the absorption 

or intensity of X-ray energy.  

3.4. Phase Index (PI) 

To determine the Phase Index (PI), the image is 

subjected to a 2D Fourier transform. The initial step 

involves converting the original image to a complex 

number via the Hilbert transform, which is defined by 

Equation (4). The phase index, which is equivalent to the 

phase difference between the image’s real and imaginary 

components, is computed using Equation (5). 

∅(𝑥, 𝑦) = 𝑎𝑟𝑐 𝑇𝑎𝑛 (
{𝐻𝑇(𝑥,𝑦)}

𝐻𝑇(𝑥,𝑦)
)       (4)

𝐶𝐼 = [
∑ ([

𝜕𝑎𝑗𝑘

𝜕𝑥
]

2

+[
𝜕𝑎𝑗𝑘

𝜕𝑦
]

2

)+𝐾
𝑘=−𝐾

∑ ∑ 𝑎𝑗𝑘
2𝑗

𝑗=1
+𝐾
𝑘=−𝐾

]

1/2

 (5) 

In the given context, HU represents the HU value of 

the pixel denoted by x and y, HT denotes the Hilbert 

transform, and ∅(x ,y) signifies the phase. The index 

term is calculated for all image attributes by dividing the 

normalized value of each attribute by the number of 

pixels comprising the region of interest. 

The classification or automation of bone assessment 

is accomplished through machine learning using a 

convolutional neural network (CNN) architecture. A 

diagrammatic representation of the bone classification 

process is illustrated in Figure 4. The input features for 

this algorithm consist of image attributes derived from 

the original CT scan data. Three distinct scenarios were 

executed to evaluate the benefits of using attributes to 

enhance the accuracy of machine learning in identifying 

bone conditions: single attribute, double attribute, and 

multi-attribute. The AI/ML algorithm’s performance is 

evaluated by assessing output accuracy, including the 

identification of true positives, true negatives, false 

positives, and false negatives. 

Figure 4. AI/ML workflow for bone classification 

(developed by the authors) 

4. Results and Discussion

4.1. Image Attribute Analysis 

A quick examination of the images is sufficient to 

perform a diagnosis of the bone condition, provided that 

the image accurately depicts the condition. Nonetheless, 

this method is often subjective. As a result, quantitative 

analysis is typically required. One approach to 

determining the quantitative value is to calculate the 

index number. In the future, this value may serve as a 

benchmark or reference for establishing the conditions. 

The evaluated images derived from CT scans are listed 

below along with their corresponding index numbers. 

The investigation focused on the pelvic bone, an 

additional site of osteoporosis prevalent among the 

elderly. 

4.2. Grayscale Index (GI) 

The HU on the CT image denotes the tissues’ 

hardness. However, various factors can influence the 

HU in CT, some of which may not directly reflect the 

condition of the material. These factors vary depending 

on the specific equipment and dosage used. Therefore, 

the direct threshold of HU for indicating bone density 

must be carefully considered. Grayscale values for bone 

are greater than those of soft tissues. Bones with greater 

density are expected to exhibit higher grayscale values 

than those with lower density. Bone density estimated by 

computed tomography correlates strongly with BMD. 



Journal of Hunan University (Natural Sciences）            Vol. 52 No. 6, June 2025 

Page | 48

Kim et al. [12] demonstrated that the HU may serve as a 

criterion for assessing bone condition. 

To obtain the Grayscale Index (GI), an average 

value is calculated within a specific region of interest. 

Figure 5 illustrates the applied grayscale attributes of 

normal and osteoporotic pelvic bones. The ROI is 

denoted by the red line. Normal bone has a higher GI 

value than bone with osteoporosis. 

Gray index = 71 

(a) 

Gray index = 29 

(b) 

Figure 5. Illustrates the Grayscale Index computed 

on (a) the original CT scan image of normal bone 

and (b) the original CT scan image of bone with 

osteoporosis (authors’ scan images) 

4.3. Roughness Index (RI) 

Bones vary in density and microstructure throughout 

their composition. Due to the modeling and remodeling 

process, bone heterogeneity can be increased [13]. The 

Roughness Index (RI) of various bone conditions was 

computed in this investigation. However, the evaluation 

region included both cortical and trabecular bone. As 

shown in Figure 6, the new image attribute of roughness 

is calculated for both normal and osteoporotic 

conditions. The RI value of normal bone is higher than 

that of osteoporotic bone. Visually, in the roughness 

attribute, normal bone has a denser appearance than 

bone with osteoporosis, particularly in the cortical 

region. 

Roughness index = 56 

(a) 

Roughness index = 44 

(b) 

Figure 6. Roughness Index of bone on the: (a) 

normal and (b) osteoporosis conditions (authors’ 

scan images) 

4.4. Contrast Index (CI) 

Bone resorption and remodeling processes tend to 

increase the heterogeneity of bone density and bone 

mineral density (BMD). Not only do they impact the 

overall density of bone minerals, but they also influence 

the density distribution. Furthermore, it is possible that 

BMDD could serve as a metric for assessing bone health 

[14]. The Contrast Index (CI) indicates the difference in 

HU between the current pixel and the adjacent pixel. A 

greater magnitude of density variation results in higher 

contrast. In the case of osteoporosis, where bone 

heterogeneity is substantial, a high CI is expected. CI 

applied to CT scan images is illustrated in Figure 7. The 

results indicate that the CI value of osteoporotic bone is 

higher than that of normal bone. As hypothesized, bones 

with osteoporosis are observed to have a progressive 

increase in BMDD rather than a decrease in BMD. A 

possible correlation exists between high BMDD 

variability and elevated bone fracture risk. 
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Contrast index = 38 

(a) 

Contrast index = 63 

(b) 

Figure 7. Contrast index at two bone types: (a) 

normal and (b) osteoporosis (authors’ scan images) 

4.5. Phase Index (PI) 

Formation takes place on outer surfaces as a 

compensatory measure for bone loss, while resorption 

predominates on inner surfaces in the elderly. Bone 

quality deteriorates when the processes of resorption and 

remodeling are unbalanced, as is the case in 

osteoporosis. This mechanism is mediated by 

osteoblasts and osteoclasts. The inability of osteoblasts 

to function results in the failure to generate collagen 

molecules, which can lead to skeletal fragility. Thus, the 

remodeling process influences the structural integrity 

and metabolic capabilities of the skeleton. The 

trabecular bone structure becomes finer in individuals 

with osteoporosis, whereas cortical bone porosity 

increases. The phase attributes and bone structure of 

osteoporotic and normal bone were compared using 

scanning electron micrographs obtained from biopsies 

[13]. This is illustrated in Figure 8. The phase index of 

denser bone structures is higher than that of thinner bone 

structures in osteoporotic bone. 

(a) (b) 

Phase index=67 
(c) 

Phase index=33 
(d) 

Figure 8. A phase index comparison of the bone 

structure of healthy and osteoporosis-affected 

individuals. (a) Normal bone, (b) osteoporosis bone, 

(c) normal bone phase attribute, and (d)

osteoporosis bone phase attribute (authors’ scan 

images) 

Applying the phase attribute to the CT scan images 

of the pelvic bone is shown in Figure 9. It is obvious that 

the normal pelvic bones and osteoporosis bone have 

different appearances. Phase index value. The phase 

index of normal bone (PI = 66) was higher than that of 

osteoporosis (PI = 34). Generally, the PI value decreases 

from normal bone to osteoporosis bone. 

Phase Index = 66 

(a) 

Phase Index = 34 

(b) 

Figure 9. Illustrates the Phase Index of (a) normal, 

and (b) osteoporosis bone (authors’ scan images) 

4.6. Visual Comparison 

The qualitative diagnosis of osteoporosis can be 

aided by visual distinctions between osteoporotic and 

healthy bone. Thus, before conducting quantitative 

analysis, it is preferable to have an image attribute that 
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can differentiate osteoporosis from healthy bone for 

rapid visual inspection. The following summarizes the 

evaluated image characteristics of the pelvic bone 

compared with the initial CT scan image (Figure 10). 

(a) 

(b) 

(c) 

(d) 

Figure 10. Visual comparison of various attributes 

of normal bone (left) and osteoporosis (right) of (a) 

original computed tomography scan (grayscale), (b) 

roughness, (c) contrast, and (d) phase attribute 

(authors’ scan images) 

4.7. Implementation of AI/ML for Osteoporosis 

Evaluation 

An alternative approach to mitigate the subjectivity 

associated with image-based osteoporosis diagnosis is to 

automate the process using a machine learning 

algorithm. However, the precision and dependability of 

this method require further investigation. The present 

study documents the application of ML techniques in the 

context of image-based bone diagnosis. 

The effectiveness of machine learning diagnoses is 

assessed through prediction accuracy and the loss 

function. Accuracy signifies the degree to which 

machine learning can approximate the true condition, 

whereas the loss function reflects prediction errors when 

the model fails to identify the true condition. Two types 

of prediction errors are distinguished: false positives and 

false negatives. A false positive occurs when a condition 

is erroneously diagnosed despite its absence. A false 

negative, on the other hand, refers to an erroneous 

diagnosis in which the condition is present but not 

detected by ML. Although the primary objective of 

machine learning diagnosis is to achieve high accuracy, 

the loss function remains indispensable. In medical 

applications, reducing false negatives is more critical 

than reducing false positives. 

To evaluate the efficacy of ML, three distinct test 

scenarios involving single attributes, double attributes, 

and multiple attributes were executed. In the single 

attribute scenario, the ML model is trained using one 

attribute. An example of a single image attribute, such 

as the original CT image, is employed as input for the 

AI/ML algorithm. In the double-attribute scenario, the 

input to the AI/ML algorithm consists of a pair 

comprising one derived attribute and the original CT 

scan, or two derived attributes. In contrast, in the multi-

attribute scenario, the input consists of all attributes in 

addition to the original CT scan. With the sole 

distinction being the input, each test was executed using 

the same machine learning architecture and the same 

dataset. The training dataset comprised 160 healthy bone 

samples and 160 osteoporosis-affected bone samples. 

Ten bone samples were used in the testing phase: five 

normal bones and five with osteoporosis; these samples 

were excluded from the training phase. 

Test of a single attribute: This experiment aimed to 

determine the efficacy of each attribute in automatically 

detecting osteoporosis via machine learning. For each of 

these machine learning inputs – contrast, roughness, 

phase, and CT – the input consists of a single value. 

Figure 11 illustrates the efficacy of machine learning 

using a CT image and a single attribute; results are also 

presented in Figure 11. During the training phase, the 

machine accurately predicted the target bone with a loss 

function of approximately 10% and 100% accuracy. 

When presented with new data samples, the AI/ML 

model’s ability to correctly identify the target 

deteriorated; it correctly predicted 60% of cases, with 

the remaining 40% classified as false negatives. Four out 

of five bones affected by osteoporosis were 

misclassified as normal. Table 1 summarizes the 

accuracy of each attribute. The findings indicate that the 

roughness attribute yields the highest accuracy at 100%, 

whereas the original CT image results in the falsest 

negatives. 
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Table 1. Performance of AI/ML in predicting bone 

condition using a single attribute (compiled by the 

authors) 

Attribute 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

CT 50% 10% 0 40% 

Roughness 50% 50% 0 0 

Contrast 50% 10% 40% 0 

Phase 50% 20% 0 30% 

(a) 

(b) 

(c) 

(d) 

Figure 11. The efficacy of AI/ML using only CT scan 

images was trained on hundreds of data samples. (a) 

Accuracy and loss function, (b) confusion matrix at 

the training stage, (c) predicted output, and (d) 

confusion matrix of the output (test stage on 10 

samples) (authors’ design) 

For the double-attribute test, the input was 

initialized with a pair of attributes. In addition to testing 

the original CT scan paired with another attribute, 

alternative attribute pairs without CT were also 

examined. Figure 12 displays the outcome of the CT–

roughness attribute pair, and Table 2 summarizes the 

results for the remaining pairings. The use of paired 

attributes improved the predictive accuracy of ML for 

osteoporosis. The accuracy of the CT pair with 

roughness attributes is identical to that of the CT pair 

with phase attributes: 100%. However, CT continues to 

produce a 30% false negative rate when combined with 

contrast and phase attributes. 

Table 2. Performance of AI/ML in predicting bone 

condition using pair attributes (compiled by the 

authors) 

Attribute Pair 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

CT-

Roughness 

50% 50% 0 0 

CT- Contrast 50% 20% 0 30% 

CT-Phase 50% 20% 0 30% 

Roughness-

Phase 

50% 50% 0 0 
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(a) 

(b) 

(c) 

(d) 

Figure 12. The efficacy of AI/ML using only 

computed tomography scan images: (a) accuracy 

and loss function, (b) confusion matrix at the 

training stage, (c) predicted output, and (d) 

confusion matrix of the output (test stage) (authors’ 

design) 

The multi-attributes test was executed by providing 

the AI/ML algorithm with CT and all attributes as inputs. 

The outcome indicates that the highest lev-el precision 

(100%) was attained. Every single targeted bone was 

accurately predicted, and the loss function was 

maintained at 10% (Figure 13). 

(a) 

(b) 

(c)
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(d) 

Figure 13 illustrates the performance of AI/ML with 

multiple attributes: (a) accuracy and loss function, 

(b) confusion matrix at the training stage, (c)

predicted output, and (d) confusion matrix of the 

output (test stage) (authors’ design) 

5. Conclusion

Osteoporosis is the most prevalent condition among 

the elderly and necessitates timely intervention to 

prevent severe complications. Nevertheless, early 

detection of osteoporosis remains challenging and is 

often limited to a single technique. This research 

presents an alternative approach to detecting 

osteoporosis from computed tomography (CT) scan 

images by employing advanced image processing 

methods and artificial intelligence/machine learning 

technology. Four image attributes—namely, grayscale, 

roughness, contrast, and phase—were developed and 

tested. The roughness and phase characteristics of 

osteoporosis-affected bone differ significantly from 

those of healthy bone. However, the use of these 

characteristics as supplementary features in ML models 

can enhance the accuracy of AI/ML in the automated 

detection of osteoporosis. In contrast to relying solely on 

CT scan images, incorporating additional attributes as 

input can improve accuracy and reduce the occurrence 

of false negatives in prediction outcomes. This approach 

can serve as an alternative method for distinguishing 

osteoporosis from healthy bone or for detecting the 

condition. 

This study presents an innovative approach for 

osteoporosis detection using machine learning 

techniques and novel image attributes derived from 

computed tomography scans, such as grayscale, 

roughness, contrast, and phase. These attributes, which 

are essential for accurate diagnosis, improve detection 

accuracy and reduce false negative errors. By combining 

image processing and machine learning, this method 

offers a faster and more cost-effective non-invasive 

alternative to traditional techniques such as DXA. The 

main innovation of this study is the use of multiple 

image attributes to enhance the accuracy and efficiency 

of osteoporosis detection. 

Based on the findings, this machine learning–based 

method is recommended for osteoporosis detection in 

clinical settings where DXA is not readily accessible. 

Future efforts should focus on further validation of the 

model using larger and more diverse datasets to confirm 

its generalizability across different populations. 

Moreover, integrating this automated detection system 

into clinical practice would significantly reduce the 

burden on healthcare professionals, enabling faster and 

more accurate diagnoses. 

The next steps in this research should involve 

refining the model to achieve higher accuracy and 

incorporating additional image attributes that may 

further enhance the evaluation of bone condition. Future 

studies could also explore combining different imaging 

modalities, such as MRI or qCT, with machine learning 

to provide a comprehensive and robust diagnostic tool. 

Additionally, real-time application of the model in 

clinical settings, followed by longitudinal studies to 

monitor its impact on patient outcomes, would help 

establish the method’s clinical utility and effectiveness. 
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