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Purpose. The study explored the clinical influence, effectiveness, limitations, and human comparison outcomes of machine
learning in diagnosing (1) dental diseases, (2) periodontal diseases, (3) trauma and neuralgias, (4) cysts and tumors, (5) glandular
disorders, and (6) bone and temporomandibular joint as possible causes of dental and orofacial pain. Method. Scopus, PubMed,
and Web of Science (all databases) were searched by 2 reviewers until 29™ October 2020. Articles were screened and narratively
synthesized according to PRISMA-DTA guidelines based on predefined eligibility criteria. Articles that made direct reference test
comparisons to human clinicians were evaluated using the MI-CLAIM checklist. The risk of bias was assessed by JBI-DTA critical
appraisal, and certainty of the evidence was evaluated using the GRADE approach. Information regarding the quantification
method of dental pain and disease, the conditional characteristics of both training and test data cohort in the machine learning,
diagnostic outcomes, and diagnostic test comparisons with clinicians, where applicable, were extracted. Results. 34 eligible articles
were found for data synthesis, of which 8 articles made direct reference comparisons to human clinicians. 7 papers scored over 13
(out of the evaluated 15 points) in the MI-CLAIM approach with all papers scoring 5+ (out of 7) in JBI-DTA appraisals. GRADE
approach revealed serious risks of bias and inconsistencies with most studies containing more positive cases than their true
prevalence in order to facilitate machine learning. Patient-perceived symptoms and clinical history were generally found to be less
reliable than radiographs or histology for training accurate machine learning models. A low agreement level between clinicians
training the models was suggested to have a negative impact on the prediction accuracy. Reference comparisons found non-
specialized clinicians with less than 3 years of experience to be disadvantaged against trained models. Conclusion. Machine
learning in dental and orofacial healthcare has shown respectable results in diagnosing diseases with symptomatic pain and with
improved future iterations and can be used as a diagnostic aid in the clinics. The current review did not internally analyze the
machine learning models and their respective algorithms, nor consider the confounding variables and factors responsible for
shaping the orofacial disorders responsible for eliciting pain.

1. Introduction dentin (hypersensitivity pain) [2] or from carious in-

fection of the dental pulp (pulpitis) [3]. Untreated dental
Pain is a subjective sensation and has varying tolerance  pulp encourages the infection to spread through the root
thresholds [1]. Orofacial pain has multiple origins and  canals into the periodontal tissue (apical periodontitis)
varying intensities. The pain may arise from exposed [4, 5] and may cause swelling, infection, and bone loss



(periapical abscess) [6]. Periodontal tissue can also be
painfully infected without carious activity (gingivitis and
periodontitis) [7]. Maxillofacial fractures [8], as well as
iatrogenic trauma/infection during dental restorative/
endodontic treatment [2], may elicit varying levels of
pain. Bone diseases [9], temporomandibular joint dis-
orders [10], space infections [11], salivary gland disorders
[12, 13], and sinusitis [14] elicit pain. Furthermore,
neuralgia and secondary sensory nerve compression due
to growing cysts and tumors can elicit severe pain
[15, 16]. These conditions are categorized as common
diseases and disorders that elicit dental and orofacial pain
in the dental clinic [17].

The clinician’s ability to diagnose such events swiftly and
accurately is pivotal in successful patient management.
However, various studies have shown that incorrect diag-
noses are fairly common among clinicians in such situations
[5, 6, 18]. While pain itself might not be reliably quantified,
machine learning/artificial intelligence (AI) has been re-
cently deployed to detect and quantify various diseases
which elicit pain within the orofacial region to aid in ac-
curate diagnostics and management.

Al and computerized support, although not new to
healthcare, have lately received a lot of attention within the
sphere of dentistry. These reviews covered their potential
dental applications [19], success in detecting precancerous
lesions and metastases [20], effectiveness in improving the
quality of maxillofacial radiology [21], success in ortho-
dontic treatment [22], and orthopedic rehabilitation [23], as
well as concurrent application with virtual reality to decrease
anxiety in young patients [24]. However, the aforemen-
tioned reviews did not systematically explore the current
diagnostic capabilities of Al in identifying common orofacial
diseases and disorders and/or the subsequently elicited pain
[17].

Therefore, the current review was conducted and
narratively synthesized to explore the influence of ma-
chine learning in the following diagnostic roles: (1) pain
associated with dental diseases, (2) pain associated with
periodontal diseases, (3) pain associated with trauma and
neuralgias, (4) pain associated with cysts and tumors, (5)
pain associated with glandular disorders, and (6) pain
arising from bone and temporomandibular joint. The
clinical effectiveness of machine learning, potential
variations and probable causes, and human versus ma-
chine comparisons were also explored. The effectiveness
of AT’s influence was quantified using accuracy (ability to
correctly differentiate disease from control), sensitivity
(correctly identifying diseased subjects), specificity
(correctly identifying disease-free subjects), and preci-
sion (repeated correct diagnoses) as appropriate.

2. Materials and Methods

2.1. Research Design. The study adhered closely to the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses for Diagnostic Test Accuracy (PRISMA-DTA)
guidelines but followed a narration-based, qualitative ap-
proach to represent the included literature [25].
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2.2. Eligibility Criteria. The following inclusion and exclu-
sion criteria were developed for the current systematic
review.

2.2.1. Inclusion Criteria

(1) Original articles describing the use of intelligent
computer-guided decision-making to diagnose
orofacial diseases that produce symptomatic pain in
humans

(2) Studies that incorporated diagnostic management of
pain and inflammation using deep learning and
intelligent decision-making systems within all spe-
cialties of dentistry

(3) Studies of intelligent technologies for emotion and
facial expression recognition applied in facial pain
diagnostics and healthcare

2.2.2. Exclusion Criteria

(1) Literature demonstrating the application of expert
systems, deep learning, and intelligent tools for
anatomical and physiological morphology and
radiomics quality analyses

(2) Studies on intelligent systems used to detect pre-
cancerous or metastatic cancerous lesions, monitor
surgically intervened malignancies, or assess the
quality of life changes following tumor metastasis
and chemo/radiation therapy

(3) Editorials, reviews, book chapters, opinion letters,
magazine issues, product advertisements, conference
proceedings, social media and blog posts, and articles
written in a foreign language without accompanying
English translation

2.3. Specific Study Characteristics for Diagnostic Comparisons.
Eligible and included studies that made human versus
machine diagnostic comparisons were further screened
according to the following criteria:

(i) Index test and evaluating parameters: the sensitivity
and/or specificity of clinically trained machine
learning models

(ii) Reference standards: diagnostic accuracy of clini-
cians in identifying target conditions

(iii) Target conditions: isolation of dental diseases that
lead to symptomatic pain in the following condi-
tions: dentinal, pulpal, periodontal, and alveolar
inflammatory diseases; traumatic and cranial neu-
ralgic disorders; odontogenic and nonodontogenic
orofacial growths; orofacial glandular inflamma-
tion, obstruction, and impaired function; and facial
bone and joint disorders

2.4. Information Source. All data were extracted from Sco-
pus, PubMed, and Web of Science (all databases) by one
clinician specializing in digital rehabilitation and one
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computing and imaging specialist. The Web of Science
databases included the WoS Core collection, Current
Contents Connect, Derwent Innovations Index, KCI Korean
Journal Database, Medline, Russian Science Citation Index,
and SciELO Citation Index. The data was extracted from
2020 backward with no lower limits. The final search was
made in early November 2020.

2.5. Electronic Search Strategy. The strategy was specifically
formulated using Boolean Logic (AND) and wildcards (*) to
allow for the same search terms to be applicable for all
databases without requiring any modifications thereby
maximizing data output [26]. The following combinations
were used in the search:

[ Big AND data AND dent™ AND pain ]; [ Deep AND
learning AND smart AND dent” ]; [ Expert AND
system” AND dent ]; [ Expert AND system™ AND
maxill® AND pain ]; [ Machine AND learning AND
dent™ AND pain |; [ Neural AND network AND dent”
AND pain ]; [ Neural AND network AND maxill* AND
pain |; [ Generative AND adversarial AND dent” |;
[Fuzzy AND network AND dent”]; [ Artificial AND
intelligen® AND dent™ AND pain ; [ Artificial AND
intelligen™ AND caries AND pain |; [ Intelligen® AND
ulcer AND pain ]; [ Smart AND dent™ AND pain [; [
Comput™ AND Intelligen® AND pain AND diagnos”
AND dent” J; [ Smart AND diagnos™ AND dent” AND
pain |; [ Smart AND diagnos™ AND facial AND pain J; [
Intelligen® AND pain AND face ]; [ Intelligen® AND
pain AND dent” |; [ Intelligen® AND device® AND
dent” AND pain |; [ Intelligen® AND Sensor” AND
diagnos™ AND dent” AND pain ]; [ Electr™ AND
Sensor” AND diagnos” AND maxill® AND pain J; |
Intelligen™ AND biosens™ AND oral |; [ Artificial AND
Somatosensor® AND facial ]; [ Intelligen® AND
Somatosensor® AND dent® ]; [ intelligen® AND
inflam™ AND facial |; [Tensor AND pain AND dent” |;
[ Comput™ AND language AND inflam™ AND face J; [
Intelligen™ AND oral AND carcinoma |; [ Augment”
AND reality AND dent” AND pain |; [ Virtual AND
dent” AND diagnos® AND pain |; [ Artificial AND
Intelligen™ AND implant® AND pain ]; [ Deep AND
learning AND maxil® AND surg” J; [ Intelligen® AND
ortho® AND pain AND dent” ]; [ Deep AND learning
AND radio® AND oral |; [ Deep AND learning AND
radiol® AND pulp” ]; [ Deep AND learning AND
radiol® AND periodon”™ ].

2.6. Study Selection and Data Collection Process. Titles were
screened for duplicates using Endnote v8.2, and the
remaining manuscripts were then screened by abstract based
on predefined eligibility criteria. The articles excluded
during abstract screening were documented along with the
theme of the study and the reasons for exclusion. The level of
agreement between the two reviewers was measured using
the kappa coeflicient, and all disagreements were resolved by
a face-to-face meeting. Finally, full papers were read, and

ineligible articles were removed with the reason for removal
being noted.

2.7. Data Extraction. The following data were extracted from
the methodology and result sections of the selected papers:
quantifications related to dental pain and the machine
learning classification models used to develop the intelligent
system; the number and conditional characteristics of the
training dataset that was used to train the intelligent system;
the number of test data used to evaluate the newly trained
system with possible human comparisons along with their
subsequent learning outcomes; and finally, the clinician’s
specific role in training or validating the machine learning
model which was also documented.

2.8. Diagnostic Accuracy Measures. Specificity (Sp) and
sensitivity (Sn) were measured along with accuracy (Ac) and
precision (Pr) data which were collected. All obtained values
were standardized to 0.00-1.00, and normalized data were
given a 1l-point standard deviation [27]. The number of
learning data (n") and test data (n”) was also collected. No
eligible papers were excluded for not presenting one or more
of the aforementioned summary measures.

2.9. Risk of Bias and Applicability. Studies that made a direct
comparison to clinicians as reference standards were
assessed for bias and applicability. The appropriateness of
the machine learning model was evaluated using the Min-
imum Information about Clinical Artificial Intelligence
Modeling (MI-CLAIM) checklist [28]. The risk of bias
among studies and possible inconsistencies in the com-
parison were assessed using Joanna Brigg’s Institute Critical
Appraisal for Diagnostic Test Accuracy (JBI-DTA) checklist
[29]. The findings from the MI-CLAIM and JBI-DTA were
then used to evaluate the quality of the diagnostic evidence
produced in the studies by using the Cochrane GradePro
(GRADE approach) [30].

2.10. Additional Syntheses. A meta-analysis was deemed
inappropriate due to the substantial functional differences
and clinical heterogeneity present across the various disease
classifications and machine learning models.

3. Results

3.1. Study Selection. During the screening process, the re-
viewers had a fair agreement (k=0.68) in the screening
process. 34 articles were eventually selected for full paper
reading based on eligibility criteria (Figure 1).

3.2. Study Characteristics and Individual Results. The study
characteristics and their individual findings have been
tabulated and presented as supplementary documents with
this manuscript. The papers and tables are categorized into
the following subsections: (1) pain associated with dental
diseases [1-3, 31-37] (Supplementary Table S1), (2) pain
associated with periodontal diseases [4-7, 18, 38-41]
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FIGURE 1: PRISMA flowchart of summary findings.

(Supplementary Table S2), (3) pain associated with trauma
and neuralgias [8, 11, 16, 42] (Supplementary Table S3), (4)
pain associated with cysts and tumors [15, 43, 44] (Sup-
plementary Table S4), (5) pain associated with glandular
disorders [12-14, 45] (Supplementary Table S5), and (6) pain
arising from bone and temporomandibular joint
[9, 10, 46-48] (Supplementary Table S6). The details of the
articles excluded (and the entire study selection process)
during systematic screening have been documented in
Supplementary Material S7; Section 1.

3.3. Risk of Bias and Applicability. The current study of 34
published documents identified 8 articles
[5, 6, 12-15, 31, 39] that made direct comparisons be-
tween the diagnostic accuracy of machine learning
models and human clinicians. Of the 15 points evaluated
from the MI-CLAIM checklist, all but one paper [39]
scored over 13. JBI-DTA was assessed over 7 points
where all papers scored 5 or more. Five of the 8 articles
[5, 12-15, 39] could not avoid a case-control design as it
was an integral part of the machine training process as
found during MI-CLAIM. A “Range from studies”
GRADE approach was undertaken to evaluate the col-
lective diagnostic certainty of machine learning appli-
cability. The GRADE approach suggested that a high
certainty of diagnostic evidence for both positive and
negative cases was present in machine learning.

However, there were serious risks of collective bias and
design inconsistencies among the cross-sectional cohorts
that should be considered alongside the overall GRADE
score. The conditions and explanations for all findings
have been provided in Supplementary Material S7;
Sections 2, 3, and 4.

3.4. Diagnostic Measure Comparisons. All 34 studies have
been individually documented within Supplementary
Tables S1 to S6. Only the articles that made direct com-
parisons to clinicians have been documented in Table 1. All
the studies mentioned in Table 1 have also been discussed in
detail within the supplementary tables.

4. Discussion

4.1. Summary of Findings. The current review explored the
clinical influence, effectiveness, limitations, and human
comparison outcomes of machine learning. The findings of
all 34 papers included within the systematic review have
been discussed in the following subsections: (1) pain asso-
ciated with dental diseases, (2) pain associated with peri-
odontal diseases, (3) pain associated with trauma and
neuralgias, (4) pain associated with cysts and tumors, (5)
pain associated with glandular disorders, and (6) pain arising
from bone and temporomandibular joint.
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TaBLE 1: Summary outcomes of studies comparing diagnostic measures.

Author Target condition definition Testlng simple Index testb Reference tSSt
size outcomes outcomes
Cantu et al. Extent and infiltration of .proxlmal caries into dentinal 141 Sn=0.75 Sp=083  Sn=036, Sp=0.91
[31] tissue
Endresetal. [5] Detect and classify periapical inflammation 102 Sn=0.51 Sn=0.51
Snlia(;o;(z)d SG lcin: 89 Parotid Gland
. Diagnose Sjogren syndrome in parotid and _ o op=0 Sn=0.67, Sp=0.86
Kise et al. [13] . 40 Submandibular .
submandibular glands Submandibular Gland
Gland Sn=0.78, Sp=0.66
Sn=0.81, Sp=0.87 R e
Oral surgeons
Yang et al. [15] Detect the presence of pathologic growth 181 Sn=0.68 Sn=0.67
’ ' General dentists
Sn=0.64
Kim et al, [39]  Localize periodontal ]1);?2 nlsoss and classify apical 800 Sn=0.77, Sp=0.95  Sn=0.78, Sp=0.92
>3 years’ experience
. . N . ~ ~ Sn=0.99, Sp=0.97
Kise et al. [12] Identify fatty degeneration within the salivary glands 100 Sn=1.00, Sp=0.92 <3 years’ experience
Sn=0.78, Sp=0.89
Krois et al. [6] To detect the extent of periodontal bone loss 353 Sn=0.81, Sp=0.81 Sn=0.92, Sp=0.63
>3 years’ experience
Murata et al. Identify features of sinusitis 120 Sn=0.86, Sp=0.88 Sn.=090, Sp=0.89

(14]

<3 years’ experience
Sn=0.78, Sp=0.75

Sn: sensitivity; Sp: specificity; *Testing samples: medical imaging data (radiographs/ultrasound/computed tomography); “Index test: machine learning model;

“Reference test: human clinicians.

4.1.1. Pain Associated with Dental Diseases. Real-time
quantification of subjective dental pain demonstrated
varying degrees of accuracy across multiple machine
learning models when Hu et al. [1] attempted to detect
(Ac=0.80, Sn=0.41, Sp=0.89) and localize (Ac=0.74,
Sn=0.54, Sp=0.86) the source and intensity of dentin
hypersensitivity pain arising from prefrontal and primary
sensory cortices. The findings, in combination with Chat-
topadhyay’s results [33], may contraindicate the imple-
mentation of an intelligent pain prediction system for
perceived dental pain. Machine learning models based on
clinically perceived pain produced less accurate outcomes
for pulpal (Ac=0.74-0.78, Sn=0.48-0.71, Sp=0.73-0.93)
and periodontal diseases (Ac=0.81, Sn=0.78, Sp=0.88),
with the least accuracy (Ac=0.64, Sn=0.64, Sp=0.96) for
alveolar abscess [33]. Therefore, it can be argued that
identifying the elusive source of dental pain is a more reliable
estimate than quantifying pain as a symptom.

However, both proximal and periapical radiographs
(Ac=0.80, Sn=0.75, Sp=0.83) [31, 34] as well as histo-
logically (Ac=0.98, Pr=0.98) trained models [2, 34] were
able to reliably detect caries as a source for pain. While the
aforementioned is considerably more efficient than clini-
cians (Ac=0.71, Sn =0.36, Sp=0.91), dental specialists play
an important role in training the machine from radiographs
[3] or histological data [2]. Therefore, the prediction of the
system may be directly dependent on the experience and
agreement of the trainers.

Even periapical radiographs were capable of effectively
(Ac=0.82) detecting caries progression in posterior teeth
[3]. Training dataset based on photographs (n* =425,

Sn=0.77-0.98, Sp=0.84-0.96) [32] and photodetection
(n* =24, Ac=1.0) [37] produced varying outcomes when
they were used to localize the progression of carious infil-
tration within the dentin layer [32]. This can be due to the
funneling nature of caries progression as well as the small
training datasets used. Many carious lesions, which visually
appear negligible on the enamel surface, can funnel out
within the dentin layer and cause sensitivity pain. Such
factors were not considered in Rahman’s study [37]. Re-
searchers also attempted to provide camera-based intelligent
solutions for end-users (patients). In such designs, video-
learned systems (n*=10,080) produced reasonably reliable
diagnoses of caries (Sn=0.98, Sp=0.93) and periodontitis
(Sn=0.97, Sp=0.95) but were not very sensitive to painful
microdefects like cracked teeth (Sn=0.75, Sp=0.99) [36].

4.1.2. Pain Associated with Periodontal Diseases. The ma-
jority of the periodontal pain was associated with peri-
odontal bone loss and root attachment loss which were,
therefore, the primary quantification parameters [5]. Cli-
nicians’ experience was assumed to play a critical role in
dictating the overall accuracy of radiographic differential
diagnosis in machine learning. This assumption was con-
firmed by Chang et al. [38], Kim et al. [39], and Krois et al.
[6] who found clinicians to make poorer diagnoses
(Ac=0.76, Sn=0.78-0.92, Sp =0.63-0.92) than their intel-
ligent prodigies (Ac=0.81, Sn=0.77-0.81, Sp =0.81-0.95).
This was eventually reflected on the deep learning model as
less accurate results with more variations were obtained
contradicting Endres et al. [5], who found no significant



correlation in their study. This could be due to the relatively
low agreement (k=0.48-0.52) between dental specialists
[6, 18] in diagnosing a radiograph. Furthermore, Setzer’s
study [40] showed that the sensitivity of the machine in
detecting periodontal diseases (Sn=0.93, Sp =0.88) was the
same as the agreement between highly experienced spe-
cialists (k=0.93). The clinicians themselves were inaccurate
in diagnosing 31% of the time [5], and therefore, machine
learning was deemed more specific. Periodontal conditions
involved with larger bone defects [6] and indeciduous or
crowded dentitions could affect predictive outcomes on
panoramic radiographs (Sn=0.84, Sp=0.88, Pr=0.81) [41].
Real-time/clinical machine learning, however, was less
influenced by the operator’s prowess [7] and heavily de-
pendent on the accuracy of patient feedback (Ac=0.82,
Sn=0.87, Sp=0.76) during pain sensation [4].

4.1.3. Pain Associated with Trauma and Neuralgias. Pain
associated with root fractures is difficult to diagnose without
a clear radiograph. With machine learning applied to clear
panoramic radiographs, the intelligent system was less
sensitive to localizing fractures on anterior teeth (Sn=0.53,
Pr=0.88) as opposed to the posterior teeth (Sn=0.70,
Pr=10.95) [8]. This was probably due to the vertebral shadow
superimposing on the dental root anatomy [8, 18]. Trauma is
often accompanied by painful swelling. Zhang et al. [11]
demonstrated that a trained machine with a detailed patient
history was able to accurately predict (Ac = 0.94-0.98) which
patients were likely to experience painful swelling after tooth
extractions.

McCartney et al. [16] and Limonadi et al. [42] designed
and compared questionnaire-based intelligent systems to
diagnose the source of facial pain. While the systems were
accurate in diagnosing typical trigeminal neuralgia
(Sn=0.84-0.92, Sp=0.83-0.84), it was observed that deep
learning was not very sensitive to atypical neuralgias
(Sn=0.50-0.63, Sp = 0.94-0.95) [16, 42]. This is partly due to
the idiopathic nature of certain diseases, which cause varying
clinical symptoms including pain. Such variations can cause
further disagreement in differential diagnoses among spe-
cialists, whose opinions are in turn used to train and validate
the intelligent systems [6, 18]. The questionnaire-based
method of deep learning hinges on the patients” ability to
accurately report their conditions and pain intensity and was
therefore may not be preferable for evaluating dental pain
[1, 33].

4.1.4. Pain Associated with Cysts and Tumors. Although
most cysts, tumors, and other pathologic growths in the oral
cavity are initially asymptomatic, growing lesions tend to
elicit painful responses [15]. All the intelligent systems
designed for tumor detection [15, 43, 44] were trained from
panoramic radiographs by 2 expert radiologists. Watanabe
et al. [44] carried out deep learning on larger (>10 mm)
lesions, specifically radicular cyst lesions from panoramic
radiographs (n"=330) where the authors found that the
cortical thickness around the canine fossae and the maxillary
sinus cavities drastically reduced prediction sensitivity
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(Sn=0.46, Pr=0.88 from Sn=1.00, Pr=0.92). Kwon’s
findings [43] agreed with Watanabe in that maxillary lesions
were harder to predict. However, Kwon’s results, which were
based on a larger dataset (n*=946) and a pretrained neural
network, saw comparatively better outcomes for radicular
cysts (Ac=0.96, Sn =0.99, Sp = 0.83). This may indicate that
the parameters used for machine learning in predicting oral
tumors are more important than the experts who train the
system. Deep learning produced better results for odonto-
genic keratocyst (Ac=0.94, Sn=0.70, Sp=0.92, Pr=0.63)
when compared to diagnoses made by both surgeons
(Sn=0.67, Pr=0.67) and general dentists (Sn=0.64,
Pr=0.65) [15, 43]. This human-based discrepancy is prob-
ably due to the irregular shape and radiolucency of the
tumor in respect to the rest of the mandibular anatomy.
However, clinicians in Yang’s study [15] were more sensitive
(Sn=0.36-0.45) to detecting well-defined ameloblastomas
from radiographs than the trained machine (Sn=0.33) [15].

4.1.5.  Pain  Associated with  Glandular  Disorders.
Maxillary sinusitis is an important differential diagnosis
when evaluating the source of maxillary anterior pain. This
can be done clinically by observing mucus discharge or
through radiographs exhibiting glandular thickening within
the sinus lining [14]. Kim et al. [45] and Murata et al. [14]
showed machine learning to accurately detect sinusitis from
both Water’s view paranasal sinus (PNS) (Ac=0.94,
Sn=0.89, SP =0.99) and panoramic radiographs (Ac=0.88,
Sn=0.86, Sp=0.88). Deep learning outcomes from pano-
ramic radiographs were comparable to diagnoses made by
radiologists who had >20 years of experience (Ac=0.90,
Sn=0.90, Sp=0.89) and better agreement (k=0.85) in di-
agnoses. [14, 45] Kim also demonstrated that when multiple
trained virtual machines unanimously (k > 0.90) diagnose an
image (majority decision analysis system), they produce
accurate results (Ac=0.94) [45] comparable to radiologists
with over 30 years of diagnostic experience (Ac=0.98) [12].

When assessing glandular disorders, radiologists dem-
onstrated better agreement (k = 0.65) for disorders of visibly
larger glands (parotid) as opposed to smaller glands
(k=0.51) obstructed by bony anatomy (submandibular
gland) [13]. This deemed machine learning more sensitive to
glandular anomalies but was also equally prone to making
mistakes. Kise developed deep-learned systems to diagnose
Sjogren’s syndrome from both ultrasound imaging (parotid
gland: Ac=0.89, Sn=0.90, SP =0.89; submandibular gland:
Ac=0.84, Sn=0.81, Sp=0.87) [13] and computed tomog-
raphy (Ac=0.96, Sn=1.00, SP=0.92) [12]. The authors
found that only clinicians with >30 years of experience were
able to compete (Ac=0.98, Sn=0.99, Sp=0.97) with the
deep learning algorithm (Ac=0.96, Sn=1.00, Sp=0.92) in
diagnosing salivary gland disorders from 3D CT images [12].
The outcomes for clinicians were, however, substantially
poorer when made to diagnose 2D radiographs (parotid
gland: Ac=0.77, Sn=0.67, Sp = 0.86; submandibular gland:
Ac=0.72, Sn=0.78, Sp=0.66) [13]. Regardless, deep
learning was shown to be a valuable diagnostic support for
inexperienced  clinicians  (Ac=0.77-0.84, Sn=0.78,
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Sp=0.75-0.89) [12, 14] to accurately diagnose gland-related
orofacial pain.

4.1.6. Pain Arising from Bone and Temporomandibular Joint.
Temporomandibular joint (TM]) disorders can cause severe
pain for the patients [10]. Some of the painful disorders
addressed by machine learning include joint osteoarthritis
(Ac=0.82, Sn=0.83, Pr=0.81) [47, 48], osteoporosis
(Ac=0.93, Sn=0.97, Sp=0.86) [10], reducible disk dis-
placements (unilateral: Sn=0.80, SP=0.95; bilateral:
Sn=1.00, Sp=0.89), and nonreducible disk displacements
(unilateral: Sn=0.69, SP=091; bilateral: Sn=0.37,
Sp=1.00) [46]. However, machine learning is still in its
infancy primarily due to the complex diagnostic criteria
required to confirm diseases like osteoarthritis [47]. The
disease requires diagnostic confirmations from clinical,
radiological, and serological findings and thereby complicate
the machine learning procedure. Furthermore, Nam et al. [9]
found pericoronitis and alveolar abscess to commonly (44%)
mimic TM] disorders which could be accurately differen-
tiated (Ac=10.96, SP =0.99, Sn =0.69) from true cases based
on clinical symptoms using machine learning [9].

4.2. Limitations of the Study. At the time of conceptuali-
zation and data collection, the review protocol and study
design were not registered with any databases that indexed
ongoing reviews. Past literature suggests that such regis-
trations can guard against reporting biases and validate the
integrity of the published protocol [49]. In addition to the
aforementioned, the current study was limited by several
other factors. Firstly, foreign articles without a formal
translation were not manually translated in order to prevent
misinterpretation of the technical content and, therefore,
may indicate a certain degree of publication bias. Secondly,
this review did not internally analyze the different machine
learning models and their respective algorithms and pri-
marily focused on the clinical parameters. Furthermore, the
current study did not account for the confounding variables
and factors responsible for shaping the orofacial disorders
responsible for eliciting pain. The difficulty in quantifying
pain encouraged focusing on specific target conditions
commonly, but not solely, responsible for pain. Finally,
while the diagnostic comparisons yielded high certainty and
low bias, the risk of bias and quality of evidence were not
evaluated across the remaining 26 studies due to missing
standard reference (human clinicians) comparison.

4.3. Conclusions and Future Recommendations. Machine
learning in orofacial healthcare is still emerging and has
shown modest results in diagnosing oral diseases. However,
such technology is far from replacing clinicians in rendering
healthcare and can possibly serve as an “add-on” to the
existing diagnostic tools. Various workflows and methods
exist for diagnosing dental diseases that can benefit from
future crossovers and randomized trials on larger pools of
patients in the future.
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